TEE-810-Advanced Process Energy Analysis and Optimization – 3 CHs

Background

- 1. Give brief rundown of the existing programme.
 - Industrial processes often have large utility requirements to heat and cool process streams to convert, separate and transport raw materials to products. Efficient use of utilities reduces operating costs and CO₂ emission per unit product.
 - b. For chemical processing, this means that processes should use raw materials as efficiently as is economic and practicable, both to prevent the production of waste that can be environmentally harmful and to preserve the reserves of raw materials as much as possible.
 - c. With current depleting energy resources of Pakistan, energy conservation remains the prime concern for many process industries.
 - d. The first of its kind professional course in Pakistan "Advanced process energy analysis and optimization" is designed to reduce energy for processes and sites through better design. This is achieved through the application of pinch analysis, exergy analysis and energy optimization to issues concerning energy use, utility systems and power generation.
 - e. An energy targeting and optimization software "SuperTarget" from KBC, which is used by multi-national EPC contractors like CB&I, Jacobs engineering and Fluor for energy optimization, will be introduced first time in Pakistan through this course.
 - f. SuperTarget has automated tools for both grass roots and retrofit heat exchanger network design, which are backed up by multi-case data handling and continuous targeting throughout the design cycle. Continuous targeting gives a true picture of savings and potential in existing process industry.

Rationale

2. Rationale for offering/launching the new course. Due to old technologies and poor designs, there is considerable room in existing process industries of Pakistan for energy conservation and optimization.

- a. It is essential to guide thermal energy engineers for both the design and selection of the steps as individual operations and their integration to form an efficient process focusing on energy conservation and optimization principles.
- b. To design and develop the heat exchanger networks for energy optimization both in grassroots and retrofit cases.

Educational Objectives

- 3. Objectives of the programme under which the proposed course will be conducted are:
 - a. To discuss the essential concepts of energy conservation, integration and optimization in new and retrofit designs.
 - b. To describe the first law analysis.
 - c. To explain the pinch analysis for energy integration and targeting.
 - d. To provide the essential knowledge of heat exchanger network performance analysis.
 - e. To enlighten with the concept of exergy analysis.
 - f. To heat and power integration
 - g. To describe the heat exchanger equipment and retrofitting of heat exchanger networks.
 - h. To enable students to carry out energy integration analysis using SuperTarget.
 - i. To provide hands on training for energy optimization using MATLAB.

Input Obtained from Industry/Corporate Sector/Subject Specialists/Academia

4. The working paper has been sent to the Attock oil Refinery and Power Gen.

Limited in order to obtain relevant feedback from the subject/Academia specialist.

International Practice

5. Specify the universities of repute where the proposed course is being conducted.

- a. Technical University of Delft, The Netherlands
- b. École Polytechnique Fédérale De Lausanne (EPFL), Switzerland
- c. Telemark University College, Norway

Proposed Timeframe of Commencement

6. Spring semester 2016.

Course Contents

- 7. Give details of the course, on the following lines:
 - a. Course Code TEE-810
 - b. Title Advanced Process Energy Analysis and

Optimization

- c. Credit Hours 3
- d. Objectives

The objectives of this course are:

- To elaborate the essential concepts of energy conservation, integration and optimization.
- (2) To explain the pinch analysis for energy integration and targeting.
- (3) To discuss in detail the first law analysis for process plants.
- (4) To enlighten with the concept of exergy analysis
- (5) To provide the essential knowledge of heat exchanger network performance analysis.
- (6) To describe the heat exchanger equipment and retrofitting of heat exchanger networks.
- (7) To enable students to carry out energy integration analysis using SuperTarget.
- e. **Outcomes**. The course should enable the student to:
 - Calculate targets ("best performance") for external heating/cooling with maximum heat integration.
 - (2) Design of heat exchanger networks with minimum external heating/cooling with the fewest number of units and lowest possible total area in the heat exchangers.
 - (3) Suggest energy optimal integration solutions for distillation columns, evaporators, heat and power systems (steam turbines with extraction), heat pumps and refrigeration.
- f. <u>General Competence</u>. The course will give the student insight on:
 - (1) Systems thinking, the interaction between process equipment units and efficiencies.
 - (2) Reasons for energy consumption (amounts and motives)

in industrial processes.

- (3) Operational aspects in process plants.
- (4) Structure of typical (generic) industrial processing plants.
- (5) Brief introduction to the use of mathematical optimization within process design.
- g. Contents with suggested contact hours.

No		Topics	Book	Cont
				act
				Hour
				S
(1)	The n	ature of process design and	RS	3
	integ	ration		
	•	Process Design and Integration		
	•	The Hierarchy of Chemical Process		
		Design and Integration		
	•	Continuous and Batch Processes		
	•	New Design and Retrofit		
	•	Approaches to Chemical Process		
	•	Design and Integration		
	•	Process Control		
(2)	Heat	Exchanger Networks I- Energy	RS	5
	Targe	ets		
	•	Composite Curves		
	•	The Heat Recovery Pinch		
	•	Threshold Problems		
	•	The Problem Table Algorithm		
	•	Non-global Minimum Temperature		
		Differences		
	•	Process Constraints		
	•	Utility Selection		

	Furnaces			
	Cogeneration (Combined Heat and			
	Power Generation)			
	 Integration of Heat Pumps 			
	Heat Exchanger Network Energy			
(3)	Heat Exchanger Networks II – Capital	I RS	5	
	and Total Cost Targets			
	Number of Heat Exchange Units			
	Heat Exchange Area Targets			
	Number-of-shells Target			
	Capital Cost Targets			
	Total Cost Targets			
	Heat Exchanger Network and			
	 Utilities Capital and Total 			
	Costs – Summary			
(4)	Heat Exchanger Networks III – Network	RS	8	
	Design			
	The Pinch Design Method			
	Design for Threshold Problems			
	Stream Splitting			
	Design for Multiple Pinches			
	Remaining Problem Analysis			
	 Network Optimization 			
	The Superstructure Approach to	The Superstructure Approach to		
	Heat Exchanger Network Design			
	 Retrofit of Heat Exchanger 			
	Networks			
	Addition of New Heat Transfer Area	L		
	in Retrofit			
(5)	Heat Exchanger Networks IV – Stream	RS	3	
	Data			
	 Process Changes for Heat 	[]		

	Integration		
	The Trade-Offs Between Process		
	Changes, Utility Selection, Energy		
	 Cost and Capital Cost 		
	Data Extraction		
	Exercises		
(6)	Heat Integration	RS	5
	 Heat Integration of Reactors 		
	Distillation columns		
	 Evaporators and dryers 		
	Steam systems and cogeneration		
	Cooling and refrigeration systems		
(7)	Energy Targeting using SuperTarget -		
	 Introduction to SuperTarget 		
	Guided extended case study		
	Data extraction and targeting		
	MER design and evolution		
	Design report		
(8)	Energy Optimization	FZ	8
	Objective Functions		
	Single-variable Optimization		
	Multivariable Optimization		
	Constrained Optimization		
	Linear Programming		
	Nonlinear Programming		
	Profile Optimization		
	Structural Optimization		
	 Solution of Equations using 		
	Optimization		
	Total		45
	f lab work, workshops practice (if applicable)		I

h. Details of lab work, workshops practice (if applicable).No lab is required.

i.	Recommended Reading (including Textbooks and Reference books).
----	--

Se	Title	Author(s)	Assigned	Remar
r			Code	ks
1.	Chemical Process Design	R. Smith	RS	Text
	and Integration, John			Book
	Wiley and Sons, New			
	York, 2005.			
2.	Product and Process	W. D. Seider,	SL	Referen
	Design Principles:	J. D. Seader,		се
	Synthesis, Analysis and	D. R. Lewin,		Book
	Design, John Wiley &	S. Widagdo		
	Sons, New York, 2010.			
3.	Pinch Analysis and	I. C. Kemp	СК	Referen
	Process Integration,			се
	second edition, Elsevier			Book
	Ltd, 2006.			
4.	Handbook of Process	J. Klemes	JK	Referen
	Integration, Woodhead			се
	Publishing, 2013.			Book
5.	Energy and Process	Frank Zhu	FZ	Referen
	Optimization for the			се
	Process Industries, John			Book
	Wiley & Sons, New York,			
	2014			
6.	Energy Optimization in	S. Sieniutycz,	SJ	Referen
	Process Systems, Elsevier	J. Jeżowski		се
	Ltd, 2009.			Book